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ABSTRACT

Focal cortical dysplasia is the most common malformation
in patients with intractable epilepsy. The segmentation of
FCD lesions in MR-T1 images of the brain is a crucial step
for treatment planning. In this work we present a new FCD
segmentation technique based on analysis of texture asymme-
try. This technique does not rely on template-based segmen-
tation and is applicable to patients of any age, regardless of
anatomic variations. We evaluated the method on 5 patients
(aged 11y–51y), and obtained 100% detection rate and cover-
age of 76.9% of the lesional voxels.

Index Terms— Image Segmentation, Medical diagnosis,
Epilepsy, Focal Cortical Dysplasia, Pattern Recognition

1. INTRODUCTION

Focal Cortical Dysplasia (FCD) is a malformation of corti-
cal development that results in abnormal glial elements and
disruption of the normal cortical lamination. It was first de-
scribed by Taylor [1], and it is the most common malforma-
tion in patients with intractable epilepsy [2]. FCD is also a
common cause of epilepsy in children and young adults [3, 4].
The problem of FCD detection in MRI consists in identi-

fying the approximate locations of the FCD lesions (usually
one voxel inside each lesion, or an approximation of the le-
sion by some kind of marker). The problem of FCD segmen-
tation consists in identifying the precise spatial extent of FCD
lesions, by classifying MRI voxels as either healthy or patho-
logical. Solving FCD segmentation implicitly solves FCD de-
tection. Detection and segmentation of FCD lesions are cru-
cial steps in treatment planning [5, 6, 7].
FCD lesions appear as subtle macroscopic features in

brain MR images: blurring of the gray-matter/white-matter
(GM/WM) transition, localized GM thickening and hyperin-
tense GM signal [3]. In this work we exploit the asymmetry
between texture features of lesional voxels and their healthy
counterparts in the opposing brain hemisphere to detect and
segment FCD lesions.

2. RELATEDWORKS

The most common FCD diagnosis method in clinical prac-
tice is the straightforward visual inspection of MR images
by specialists. The reported detection rate for this technique
is 50% [8]. Techniques such as multiplanar reconstruction
(MPR) and curvilinear reformatting (CR) increase the detec-
tion rate to 100% [8]. Curvilinear reformatting [9] consists
of visualizing 3D MR images as curved surfaces that follow
the shape of the brain. This technique improves the visibility
of FCD lesions over MPR [8] and can be computed automat-
ically without human interaction [10].
Several recent works presented automatic FCD detection

methods, with detection rates varying from 53% to 85% [11,
12, 13, 14]. Most of these works focus on detection rather
than segmentation. To our knowledge, Colliot et al. [14] is
the only work that report segmentation accuracy rate, with
a coverage of 73% of the lesional voxels. Some of these
works [11, 12, 14] rely on template-based segmentation tech-
niques of the GM, which are often unreliable for children and
patients who underwent brain surgery [15, 16].

3. METHOD

Our method works on volumetric MR-T1 images interpolated
to an isotropic voxel size of 1.0 mm3, and comprises 6 steps:
(i) mid-sagittal plane (MSP) location, (ii) brain segmentation,
(iii) CR computation, (iv) feature extraction, (v) voxel classi-
fication and (vi) outlier removal.

3.1. MSP Location

We locate the mid-sagittal plane that divides the brain hemi-
spheres using the heuristic minimization search of Bergo et
al. [17]. After the plane is found, the volume is rotated such
that the MSP becomes orthogonal to the coordinate system.

3.2. Brain Segmentation

We apply the automatic tree pruning technique [18] to seg-
ment the brain. Tree pruning does not rely on templates and
performs well regardless of age or anatomic variations [17].
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3.3. CR computation

The curvilinear reformatting can be encoded as an Euclidian
distance transform computed from the brain’s border. This
distance transform can be efficiently computed by the IFT-
EDT [10].

3.4. Feature Extraction

For each voxel p within the brain, we extract a 16× 16 planar
texture patch T1(p) tangent to the brain’s curvature (as com-
puted by the CR) and centered at p. The gradient vector of
the CR distance transform at the voxel’s location provides the
surface normal. We also extract a symmetric patch T2(p), lo-
cated at the reflection of T1(p) by the MSP. These patches are
illustrated by Fig. 1.

(a) (b)

Fig. 1. Texture patches used for feature extraction: (a) patch
location. (b) example of a pair of symmetric patches T1 and
T2.

The patch size was chosen experimentally. Smaller patch
sizes did not provide good classification results, while larger
patch sizes led to similar results with higher computational
cost.

For each patch we compute 6 features: sharpness (h), en-
tropy, homogeneity, contrast, intensity mean (μ) and intensity
standard deviation (σ). Sharpness is computed as the sum
of pixelwise absolute intensity differences between the patch
and a blurred copy of itself obtained by convolution with a
5× 5 Gaussian kernel with σ = 7. Entropy, homogeneity and
contrast are computed as presented by Haralick et al. [19],
using a 12 × 12 gray-level cooccurrence matrix. Using these
computed values we build a 16-element feature vector associ-
ated to voxel p as indicated by Eq. 1. All features are scaled
to fit within the [0, 1] interval.

fv(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(1)

3.5. Voxel Classification

We use a Reduced Coulomb Energy classifier (RCE) [20] to
perform the classification of the voxels, based on supervised
learning. In the RCE classifier, each training sample becomes
a hypersphere in the feature space (in our case, R

16). The
radius is chosen to be the maximum such that no training
sample from a different class is contained in the hypersphere.
Classification is performed by testing the test sample for con-
tainment within the training samples’s hyperspheres. If a test
sample falls within an ambiguous space (being contained by
hyperspheres of different classes), we classify it as lesional.
This is a design decision to prevent false negatives.

3.6. Outlier Removal

The classification result leads to outliers both in lesional and
healthy regions. However, the density of voxels classified as
lesional is visibly higher within the actual lesions. In this
step we threshold the density of voxels classified as lesional
within a fixed adjacency radius, and consider lesional only
those voxels with a density above a certain threshold, deter-
mined experimentally.

4. RESULTS

We used images from 5 epilepsy patients (age/gender: 11/M,
24/F, 12/M, 51/M, 30/F) with confirmed FCDs to evaluate the
method. The lesions were manually segmented by an special-
ist with knowledge about the lesion locations, and this ground
truth was used to extract a small training set of feature vec-
tors from each patient. We used 1% of the voxels from each
patient to build the training set, preserving a ratio of 1 : 9 be-
tween lesional and healthy voxels. This ratio affects the radii
of the RCE hyperspheres and can be used to control the ratio
of false positives/false negatives in any direction.
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Fig. 2. Ground truth and segmentation results for the 5 patients. The first row shows the ground truth provided by an specialist.
The second row shows the intermediary classification result. The third row shows the final classification result after the outlier
removal step. Patients 1 and 3 are children, and patient 1 has a visible anatomical deformity (top left).

We used the leave-one-out scheme [20] to classify the
voxels of each patient (each patient’s voxels were classified
using the training sets from the other four patients). We used
a radius of 5 voxels and a density threshold of 35% for the
outlier removal step. With these parameters, we detected all
5 lesions, with no false positives. The voxel coverage of
the lesions ranged from 62.5% to 90.3% (average: 76.9%).
Fig. 2 shows some sample slices of ground truth, intermedi-
ary classification (after step (v)) and final classification. Even
though the intermediary classification appears clean on 2D
slices such as those shown in Fig. 2, a 3D renderization shows
that it contains too much noise. Fig. 3 shows 3D renderiza-
tions of the intermediary (a) and final (b) lesion segmentations
for patient 2.
The lesion segmentation method took about 30 minutes

per patient on an Athlon64 3200+ PC: 1 minute for MSP loca-
tion (which includes the brain segmentation), 20 seconds for
CR computation, 28 minutes for feature extraction and RCE
classification, and 40 seconds for the outlier removal step.

5. CONCLUSIONS

We presented a new method for segmentation of dysplastic
lesions in MR-T1 images of the brain. Our method does not

(a) (b)

Fig. 3. 3D renderizations of the lesion segmentation for pa-
tient 2: (a) intermediary classification and (b) segmentation
after outlier removal.

rely on template-based method and is applicable to any patient
regardless of age or anatomical variations. We evaluated the
method on 5 patients of ages 11y–51y, with good results on all
of them. The average lesion coverage was 76.9%, providing
a result slightly better than the state of the art [14].
Our method requires some adhoc parameters which were

chosen experimentally, such as the radius and percentage val-
ues for outlier removal, and the parameters for texture fea-
tures and RCE classifier training. We are currently working
on automatic methods for choosing those parameters, as well
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as measuring their effect on the segmentation results. We are
also working on obtaining more datasets in order to validate
the method in a larger set of patients.
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